Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices
نویسندگان
چکیده
Polystyrene sulfonate (PSS), a strong polyelectrolyte, was used to prepare red photoluminescent PSS-penicillamine (PA) copper (Cu) nanoclusters (NC) aggregates, which displayed high selectivity and sensitivity to the detection of hydrogen sulfide (H2S). The size of the PSS-PA-Cu NC aggregates could be readily controlled from 5.5 μm to 173 nm using different concentrations of PSS, which enabled better dispersity and higher sensitivity towards H2S. PSS-PA-Cu NC aggregates provided rapid H2S detection by using the strong Cu-S interaction to quench NC photoluminescence as a sensing mechanism. As a result, a detection limit of 650 nM, which is lower than the maximum level permitted in drinking water by the World Health Organization, was achieved for the analysis of H2S in spring-water samples. Moreover, highly dispersed PSS-PA-Cu NC aggregates could be incorporated into a plate-format paper-based analytical device which enables ultra-low sample volumes (5 μL) and feature shorter analysis times (30 min) compared to conventional solution-based methods. The advantages of low reagent consumption, rapid result readout, limited equipment, and long-term storage make this platform sensitive and simple enough to use without specialized training in resource constrained settings.
منابع مشابه
Hydrogen sulfide protects coriander seedlings against copper stress by regulating the ascorbate-glutathione cycle, in leaves
Heavy metals are the cause of major abiotic stresses in plants and a principal contributor to environmental pollution in recent decades. This study investigated the effects of exogenous hydrogen sulfide on the ascorbate-glutathione cycle in the leaves of coriander seedlings under copper stress. Results showed that copper stress not only reduced APX and GR activities but also decreas...
متن کاملEffect of silicon supplementation on wheat plants under salt stress
Heavy metals are the cause of major abiotic stresses in plants and a principal contributor to environmental pollution in recent decades. This study investigated the effects of exogenous hydrogen sulfide on the ascorbate-glutathione cycle in the leaves of coriander seedlings under copper stress. Results showed that copper stress not only reduced APX and GR activities but also decreased leaf AsA,...
متن کاملAlloyed Copper Chalcogenide Nanoplatelets via Partial Cation Exchange Reactions
We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide-sulfide (CZSeS), copper tin selenide-sulfide (CTSeS), and copper zinc tin selenide-sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide-sul...
متن کاملAqueous synthesis of PEGylated copper sulfide nanoparticles for photoacoustic imaging of tumors.
By integrating high imaging sensitivity and high resolution in a single modality, photoacoustic (PA) imaging emerges as a promising diagnostic tool for clinical applications. Benefiting from the absorption in the near-infrared region (NIR), copper sulfide nanoparticles (NPs) as a contrast agent are potentially useful for increasing the sensitivity of PA imaging. However, the aqueous synthesis o...
متن کاملA Highly Specific Probe for Sensing Hydrogen Sulfide in Live Cells Based on Copper-Initiated Fluorogen with Aggregation-Induced Emission Characteristics
Here we reported the first fluorescent probe with aggregation-induced emission characteristics, namely AIE-S, for the detection of hydrogen sulfide (H2S) in live cells. The detection system is selective for complicated biological application and the response is fast enough to complete within seconds. Moreover, the probe exhibits the unique advantage of being immune to aggregation-caused quenchi...
متن کامل